3.2.56 \(\int \frac {x^5 (a+b \text {csch}^{-1}(c x))}{(d+e x^2)^{5/2}} \, dx\) [156]

3.2.56.1 Optimal result
3.2.56.2 Mathematica [C] (verified)
3.2.56.3 Rubi [A] (verified)
3.2.56.4 Maple [F]
3.2.56.5 Fricas [B] (verification not implemented)
3.2.56.6 Sympy [F(-1)]
3.2.56.7 Maxima [F(-2)]
3.2.56.8 Giac [F]
3.2.56.9 Mupad [F(-1)]

3.2.56.1 Optimal result

Integrand size = 23, antiderivative size = 251 \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\frac {b c d x \sqrt {-1-c^2 x^2}}{3 \left (c^2 d-e\right ) e^2 \sqrt {-c^2 x^2} \sqrt {d+e x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{e^3}+\frac {b x \arctan \left (\frac {\sqrt {e} \sqrt {-1-c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{e^{5/2} \sqrt {-c^2 x^2}}+\frac {8 b c \sqrt {d} x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1-c^2 x^2}}\right )}{3 e^3 \sqrt {-c^2 x^2}} \]

output
-1/3*d^2*(a+b*arccsch(c*x))/e^3/(e*x^2+d)^(3/2)+b*x*arctan(e^(1/2)*(-c^2*x 
^2-1)^(1/2)/c/(e*x^2+d)^(1/2))/e^(5/2)/(-c^2*x^2)^(1/2)+8/3*b*c*x*arctan(( 
e*x^2+d)^(1/2)/d^(1/2)/(-c^2*x^2-1)^(1/2))*d^(1/2)/e^3/(-c^2*x^2)^(1/2)+2* 
d*(a+b*arccsch(c*x))/e^3/(e*x^2+d)^(1/2)+1/3*b*c*d*x*(-c^2*x^2-1)^(1/2)/(c 
^2*d-e)/e^2/(-c^2*x^2)^(1/2)/(e*x^2+d)^(1/2)+(a+b*arccsch(c*x))*(e*x^2+d)^ 
(1/2)/e^3
 
3.2.56.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 2.12 (sec) , antiderivative size = 241, normalized size of antiderivative = 0.96 \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\frac {\frac {2 b c d e \sqrt {1+\frac {1}{c^2 x^2}} x \left (d+e x^2\right )}{c^2 d-e}+2 a \left (8 d^2+12 d e x^2+3 e^2 x^4\right )+\frac {b c \left (d+e x^2\right ) \left (-\frac {8 d \sqrt {1+\frac {d}{e x^2}} \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,-\frac {1}{c^2 x^2},-\frac {d}{e x^2}\right )}{c^2}+\frac {3 e \sqrt {1+\frac {1}{c^2 x^2}} x^4 \sqrt {1+\frac {e x^2}{d}} \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,-c^2 x^2,-\frac {e x^2}{d}\right )}{\sqrt {1+c^2 x^2}}\right )}{x}+2 b \left (8 d^2+12 d e x^2+3 e^2 x^4\right ) \text {csch}^{-1}(c x)}{6 e^3 \left (d+e x^2\right )^{3/2}} \]

input
Integrate[(x^5*(a + b*ArcCsch[c*x]))/(d + e*x^2)^(5/2),x]
 
output
((2*b*c*d*e*Sqrt[1 + 1/(c^2*x^2)]*x*(d + e*x^2))/(c^2*d - e) + 2*a*(8*d^2 
+ 12*d*e*x^2 + 3*e^2*x^4) + (b*c*(d + e*x^2)*((-8*d*Sqrt[1 + d/(e*x^2)]*Ap 
pellF1[1, 1/2, 1/2, 2, -(1/(c^2*x^2)), -(d/(e*x^2))])/c^2 + (3*e*Sqrt[1 + 
1/(c^2*x^2)]*x^4*Sqrt[1 + (e*x^2)/d]*AppellF1[1, 1/2, 1/2, 2, -(c^2*x^2), 
-((e*x^2)/d)])/Sqrt[1 + c^2*x^2]))/x + 2*b*(8*d^2 + 12*d*e*x^2 + 3*e^2*x^4 
)*ArcCsch[c*x])/(6*e^3*(d + e*x^2)^(3/2))
 
3.2.56.3 Rubi [A] (verified)

Time = 1.41 (sec) , antiderivative size = 225, normalized size of antiderivative = 0.90, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {6856, 27, 7282, 2117, 27, 175, 66, 104, 217, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 6856

\(\displaystyle -\frac {b c x \int \frac {3 e^2 x^4+12 d e x^2+8 d^2}{3 e^3 x \sqrt {-c^2 x^2-1} \left (e x^2+d\right )^{3/2}}dx}{\sqrt {-c^2 x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {b c x \int \frac {3 e^2 x^4+12 d e x^2+8 d^2}{x \sqrt {-c^2 x^2-1} \left (e x^2+d\right )^{3/2}}dx}{3 e^3 \sqrt {-c^2 x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 7282

\(\displaystyle -\frac {b c x \int \frac {3 e^2 x^4+12 d e x^2+8 d^2}{x^2 \sqrt {-c^2 x^2-1} \left (e x^2+d\right )^{3/2}}dx^2}{6 e^3 \sqrt {-c^2 x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 2117

\(\displaystyle -\frac {b c x \left (\frac {2 \int \frac {d \left (c^2 d-e\right ) \left (3 e x^2+8 d\right )}{2 x^2 \sqrt {-c^2 x^2-1} \sqrt {e x^2+d}}dx^2}{d \left (c^2 d-e\right )}-\frac {2 d e \sqrt {-c^2 x^2-1}}{\left (c^2 d-e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {-c^2 x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {b c x \left (\int \frac {3 e x^2+8 d}{x^2 \sqrt {-c^2 x^2-1} \sqrt {e x^2+d}}dx^2-\frac {2 d e \sqrt {-c^2 x^2-1}}{\left (c^2 d-e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {-c^2 x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 175

\(\displaystyle -\frac {b c x \left (3 e \int \frac {1}{\sqrt {-c^2 x^2-1} \sqrt {e x^2+d}}dx^2+8 d \int \frac {1}{x^2 \sqrt {-c^2 x^2-1} \sqrt {e x^2+d}}dx^2-\frac {2 d e \sqrt {-c^2 x^2-1}}{\left (c^2 d-e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {-c^2 x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 66

\(\displaystyle -\frac {b c x \left (8 d \int \frac {1}{x^2 \sqrt {-c^2 x^2-1} \sqrt {e x^2+d}}dx^2+6 e \int \frac {1}{-e x^4-c^2}d\frac {\sqrt {-c^2 x^2-1}}{\sqrt {e x^2+d}}-\frac {2 d e \sqrt {-c^2 x^2-1}}{\left (c^2 d-e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {-c^2 x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {b c x \left (6 e \int \frac {1}{-e x^4-c^2}d\frac {\sqrt {-c^2 x^2-1}}{\sqrt {e x^2+d}}+16 d \int \frac {1}{-x^4-d}d\frac {\sqrt {e x^2+d}}{\sqrt {-c^2 x^2-1}}-\frac {2 d e \sqrt {-c^2 x^2-1}}{\left (c^2 d-e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {-c^2 x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {b c x \left (6 e \int \frac {1}{-e x^4-c^2}d\frac {\sqrt {-c^2 x^2-1}}{\sqrt {e x^2+d}}-16 \sqrt {d} \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-c^2 x^2-1}}\right )-\frac {2 d e \sqrt {-c^2 x^2-1}}{\left (c^2 d-e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {-c^2 x^2}}-\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{e^3}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {d^2 \left (a+b \text {csch}^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \text {csch}^{-1}(c x)\right )}{e^3}-\frac {b c x \left (-\frac {6 \sqrt {e} \arctan \left (\frac {\sqrt {e} \sqrt {-c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{c}-16 \sqrt {d} \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-c^2 x^2-1}}\right )-\frac {2 d e \sqrt {-c^2 x^2-1}}{\left (c^2 d-e\right ) \sqrt {d+e x^2}}\right )}{6 e^3 \sqrt {-c^2 x^2}}\)

input
Int[(x^5*(a + b*ArcCsch[c*x]))/(d + e*x^2)^(5/2),x]
 
output
-1/3*(d^2*(a + b*ArcCsch[c*x]))/(e^3*(d + e*x^2)^(3/2)) + (2*d*(a + b*ArcC 
sch[c*x]))/(e^3*Sqrt[d + e*x^2]) + (Sqrt[d + e*x^2]*(a + b*ArcCsch[c*x]))/ 
e^3 - (b*c*x*((-2*d*e*Sqrt[-1 - c^2*x^2])/((c^2*d - e)*Sqrt[d + e*x^2]) - 
(6*Sqrt[e]*ArcTan[(Sqrt[e]*Sqrt[-1 - c^2*x^2])/(c*Sqrt[d + e*x^2])])/c - 1 
6*Sqrt[d]*ArcTan[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[-1 - c^2*x^2])]))/(6*e^3*Sq 
rt[-(c^2*x^2)])
 

3.2.56.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 66
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ 
2   Subst[Int[1/(b - d*x^2), x], x, Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; Fre 
eQ[{a, b, c, d}, x] &&  !GtQ[c - a*(d/b), 0]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 175
Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_ 
)))/((a_.) + (b_.)*(x_)), x_] :> Simp[h/b   Int[(c + d*x)^n*(e + f*x)^p, x] 
, x] + Simp[(b*g - a*h)/b   Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)), x], x] 
 /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 2117
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_ 
.)*(x_))^(p_.), x_Symbol] :> With[{Qx = PolynomialQuotient[Px, a + b*x, x], 
 R = PolynomialRemainder[Px, a + b*x, x]}, Simp[b*R*(a + b*x)^(m + 1)*(c + 
d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Si 
mp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n* 
(e + f*x)^p*ExpandToSum[(m + 1)*(b*c - a*d)*(b*e - a*f)*Qx + a*d*f*R*(m + 1 
) - b*R*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*R*(m + n + p + 3)*x, x] 
, x], x]] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && PolyQ[Px, x] && LtQ[m, - 
1] && IntegersQ[2*m, 2*n, 2*p]
 

rule 6856
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*( 
x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Si 
mp[(a + b*ArcCsch[c*x])   u, x] - Simp[b*c*(x/Sqrt[(-c^2)*x^2])   Int[Simpl 
ifyIntegrand[u/(x*Sqrt[-1 - c^2*x^2]), x], x], x]] /; FreeQ[{a, b, c, d, e, 
 f, m, p}, x] && ((IGtQ[p, 0] &&  !(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 
0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0])) || (I 
LtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))
 

rule 7282
Int[(u_)/(x_), x_Symbol] :> With[{lst = PowerVariableExpn[u, 0, x]}, Simp[1 
/lst[[2]]   Subst[Int[NormalizeIntegrand[Simplify[lst[[1]]/x], x], x], x, ( 
lst[[3]]*x)^lst[[2]]], x] /;  !FalseQ[lst] && NeQ[lst[[2]], 0]] /; NonsumQ[ 
u] &&  !RationalFunctionQ[u, x]
 
3.2.56.4 Maple [F]

\[\int \frac {x^{5} \left (a +b \,\operatorname {arccsch}\left (c x \right )\right )}{\left (e \,x^{2}+d \right )^{\frac {5}{2}}}d x\]

input
int(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^(5/2),x)
 
output
int(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^(5/2),x)
 
3.2.56.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 589 vs. \(2 (213) = 426\).

Time = 0.48 (sec) , antiderivative size = 2421, normalized size of antiderivative = 9.65 \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^(5/2),x, algorithm="fricas")
 
output
[1/12*(3*(b*c^2*d^3 + (b*c^2*d*e^2 - b*e^3)*x^4 - b*d^2*e + 2*(b*c^2*d^2*e 
 - b*d*e^2)*x^2)*sqrt(e)*log(8*c^4*e^2*x^4 + c^4*d^2 + 6*c^2*d*e + 8*(c^4* 
d*e + c^2*e^2)*x^2 + 4*(2*c^4*e*x^3 + (c^4*d + c^2*e)*x)*sqrt(e*x^2 + d)*s 
qrt(e)*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + e^2) + 4*(8*b*c^3*d^3 - 8*b*c*d^2*e 
 + 3*(b*c^3*d*e^2 - b*c*e^3)*x^4 + 12*(b*c^3*d^2*e - b*c*d*e^2)*x^2)*sqrt( 
e*x^2 + d)*log((c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 1)/(c*x)) + 8*(b*c^3*d 
^3 - b*c*d^2*e + (b*c^3*d*e^2 - b*c*e^3)*x^4 + 2*(b*c^3*d^2*e - b*c*d*e^2) 
*x^2)*sqrt(d)*log(((c^4*d^2 + 6*c^2*d*e + e^2)*x^4 + 8*(c^2*d^2 + d*e)*x^2 
 - 4*((c^3*d + c*e)*x^3 + 2*c*d*x)*sqrt(e*x^2 + d)*sqrt(d)*sqrt((c^2*x^2 + 
 1)/(c^2*x^2)) + 8*d^2)/x^4) + 4*(8*a*c^3*d^3 - 8*a*c*d^2*e + 3*(a*c^3*d*e 
^2 - a*c*e^3)*x^4 + 12*(a*c^3*d^2*e - a*c*d*e^2)*x^2 + (b*c^2*d*e^2*x^3 + 
b*c^2*d^2*e*x)*sqrt((c^2*x^2 + 1)/(c^2*x^2)))*sqrt(e*x^2 + d))/(c^3*d^3*e^ 
3 - c*d^2*e^4 + (c^3*d*e^5 - c*e^6)*x^4 + 2*(c^3*d^2*e^4 - c*d*e^5)*x^2), 
-1/6*(3*(b*c^2*d^3 + (b*c^2*d*e^2 - b*e^3)*x^4 - b*d^2*e + 2*(b*c^2*d^2*e 
- b*d*e^2)*x^2)*sqrt(-e)*arctan(1/2*(2*c^2*e*x^3 + (c^2*d + e)*x)*sqrt(e*x 
^2 + d)*sqrt(-e)*sqrt((c^2*x^2 + 1)/(c^2*x^2))/(c^2*e^2*x^4 + (c^2*d*e + e 
^2)*x^2 + d*e)) - 2*(8*b*c^3*d^3 - 8*b*c*d^2*e + 3*(b*c^3*d*e^2 - b*c*e^3) 
*x^4 + 12*(b*c^3*d^2*e - b*c*d*e^2)*x^2)*sqrt(e*x^2 + d)*log((c*x*sqrt((c^ 
2*x^2 + 1)/(c^2*x^2)) + 1)/(c*x)) - 4*(b*c^3*d^3 - b*c*d^2*e + (b*c^3*d*e^ 
2 - b*c*e^3)*x^4 + 2*(b*c^3*d^2*e - b*c*d*e^2)*x^2)*sqrt(d)*log(((c^4*d...
 
3.2.56.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\text {Timed out} \]

input
integrate(x**5*(a+b*acsch(c*x))/(e*x**2+d)**(5/2),x)
 
output
Timed out
 
3.2.56.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^(5/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.56.8 Giac [F]

\[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(x^5*(a+b*arccsch(c*x))/(e*x^2+d)^(5/2),x, algorithm="giac")
 
output
integrate((b*arccsch(c*x) + a)*x^5/(e*x^2 + d)^(5/2), x)
 
3.2.56.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \text {csch}^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\int \frac {x^5\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^{5/2}} \,d x \]

input
int((x^5*(a + b*asinh(1/(c*x))))/(d + e*x^2)^(5/2),x)
 
output
int((x^5*(a + b*asinh(1/(c*x))))/(d + e*x^2)^(5/2), x)